Verification in the Design Process of Large Real-Time Systems: A Case Study

Pascal Montag & Dirk Nowotka
<table>
<thead>
<tr>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Motivation</td>
</tr>
<tr>
<td>- Goals</td>
</tr>
<tr>
<td>- Introduction to Timed Automata</td>
</tr>
<tr>
<td>- Using Timed Automata in the Design Process</td>
</tr>
<tr>
<td>- Conclusion</td>
</tr>
</tbody>
</table>
Motivation

- Increasing extent of areas of software use
 - Increase in safety relevant applications → Need for verification methods
- Increasing complexity of software systems
 - Distributed systems → Dependencies beyond ECU borders
 - Real-Time systems → Timing constraints are hard to verify
- Increasing need of automated verification
- Approach of Timed Automata
 - Lack of appropriate case studies → No large systems so far
Overview

- Motivation
- Goals
- Introduction to Timed Automata
- Using Timed Automata in the Design Process
- Conclusion
Goals

- Modelling of a large Real-Time system
 - System should be
 - Distributed (real world of automotive systems)
 - Safety relevant (results have to be useful)
 - Time dependent (verification should not be trivial)

- Verification of safety relevant properties
Overview

- Motivation
- Goals
- Introduction to Timed Automata
- Using Timed Automata in the Design Process
- Conclusion
Introduction to Timed Automata – Definition by Example
Introduction to Timed Automata – UPPAAL Specification Language

- A[] not deadlock
- L2 \rightarrow L0
- A[] L2 imply $c\geq 1$
- E<> L2 and $c<1$
Overview

- Motivation
- Goals
- Introduction to Timed Automata
- Using Timed Automata in the Design Process
 - The Case Study System: An Emergency Brake Assistant
 - Properties to Be Verified
 - First Step: Basic Model Specification
 - Verifying Properties for the Overall System
 - Refinement Step
- Conclusion
The Case Study System: An Emergency Brake Assistant
Properties to Be Verified

1. Will the emergency brake be activated after an emergency situation has been sensed for a maximum time of 30ms?

 Radar.Close \rightarrow (\text{Brake.EmergencyBrake and CloseTimer} \leq 30\text{ms})

2. Do ECU tasks consume less time than their period lengths (deadline)?

 A[] (\text{ECU.TaskFinished imply ECU.Timer} \leq \text{Deadline})

3. Is the system deadlock free?

 A[] (\text{not deadlock})
First Step: Basic Model Specification Exemplified on Radar Model Part
First Step: Basic Model Specification Exemplified on Radar Model Part

- **SendWaves**
 - $R\text{Timer} \leq 3 \times \text{ms}$
 - $R\text{Timer} \geq 10 \times \text{us}$
 - $R\text{Timer} = 0$

- **DetectWaves**
 - $R\text{Timer} \leq \text{MaxDistance} \times \text{ms}$

- **WriteResult**
 - $R\text{Result!}$
 - $R\text{Timer} = 0$
Verifying Properties for the Overall System

1. Radar.Close → (Brake.EmergencyBrake and (CloseTimer <= 30ms))
 - Satisfied (CloseTimer does not exceed 27.83ms)
2. A[] (not deadlock)
 - Satisfied
3. A[] (ACC.TaskFinished imply (ACCTimer <= 5ms))
 - Not satisfied (ACCTimer can reach 5.344ms)
4. A[] (EBS.TaskFinished imply (EBSTimer <= 10ms))
 - Satisfied
5. A[] (Brake.TaskFinished imply (BrakeTimer <= 5ms))
 - Satisfied
Verifying Properties for the Overall System

- Design errors detected in the first specification step
 - Analysis of counter example trace indicates reasons
 - Change of basic model design (e.g. priorities, deadlines, periods)
- Fixing design errors allows verification of all properties
 → Proceed to next refinement stage
Overview

- Motivation
- Goals
- Introduction to Timed Automata
- Using Timed Automata in the Design Process
 - The Case Study System: An Emergency Brake Assistant
 - Properties to Be Verified
 - First Step: Basic Model Specification
 - Verifying Properties for the Overall System
 - Refinement Step
- Conclusion
Refinement Step

- SendWaves
 - $\text{RTimer} \leq 3*\text{ms}$
 - $\text{RTimer} \geq 10*\text{us}$
 - $\text{RTimer} = 0$

- DetectWaves
 - $\text{RTimer} \leq \text{MaxDistance}*\text{ms}$

- WriteResult
 - $\text{RTimer} = 0$
 - RRelult!
Refinement Step
Refinement Step

- UPPAAL fails in proving the same properties as for basic model
- Possible verification
 - Find and prove simulation relation on basic and refined model
 - Show that previously verified properties are still valid
 - Prove properties by (partially) using
 - Simulator model parts
 - Basic model parts
 - Use smaller refinement steps
 - Prove only local model part properties
Overview

- Motivation
- Goals
- Introduction to Timed Automata
- Using Timed Automata in the Design Process
- Conclusion
Conclusion

- Need for verification is increasing
 - Method for early stage use of formal methods presented
 - Approach to verify large systems as far as possible
- The state explosion problem sets boundaries
 - Basic idea: using simple models at an early stage
 - Refine these models at later stages
- Lack of real world examples
 - Demonstration of feasibility using automotive example
Formal methods are useful in the design of large systems.
Thank you for your attention.