Security Architectures for Software Updates and Content Protection in Vehicles

Ulrich Huber, Ahmad-Reza Sadeghi and Marko Wolf

Horst-Goertz-Institute for IT-Security
Ruhr-University Bochum, Germany

October 12, Automotive 2006
Outline

1. Introduction
2. Preliminaries
 - Application Background
 - Roles & Adversaries
3. Security Requirements
4. Proposed Solution
 - Breakdown of Requirements for Standard Architecture
 - An Enhanced HW Architecture
 - Cryptographic Module
5. Conclusions
Introduction

Flashable ECUs allow SW updates after delivery of the vehicle
- warranty-based updates
- correcting defective SW
- SW-based features sold in the after-market
- digital content (routing, LBS, multimedia)

SW protection required to prevent misuse
- IP theft, counterfeits
- unauthorized modifications
- unauthorized feature activation
Current ECUs

- provide low resistance to attacks of skilled adversaries
- SW protection based on cryptography and tamper-resistant HW still uncommon
- awareness of the need for SW protection exists (e.g., implementations using digitally signed SW updates)
- SW protection alone doomed to fail in hostile environment

Our Contribution

- model for security requirements of all relevant roles
- security analysis of all HW components and comm. channels
- breaking down overall requirements to component level
- enhance standard architecture with a secure HW component
Application Background

(a) Delivery and installation of SW components

(b) Delivery and usage of digital content
Roles

U User/owner, i.e., person that currently uses the vehicle

OEM Original Equipment Manufacturer assembles, sells, and delivers the vehicle

MSP Maintenance Service Provider maintains the user platform, i.e., repairs hardware components and/or updates software components with specific equipment

CP Content provider develops and distributes the content employed by User
Potential Adversaries

Today targets Theft (vehicle, components); Manipulation of mileage (resale, tax return) motor control unit (chip tuning), tachograph (legal driving restrictions, toll) . . .

Future targets Electronic license plate, Event data recorder, C2C & C2I communication, Infotainment . . .

<table>
<thead>
<tr>
<th>Adversary</th>
<th>Capabilities</th>
<th>Access (additional to A_{i-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 (usual user/owner)</td>
<td>Low</td>
<td>Communication channels</td>
</tr>
<tr>
<td>A_2 (sophist. owner, MSP)</td>
<td>Medium</td>
<td>Memory components</td>
</tr>
<tr>
<td>A_3 (competitor, org. crime)</td>
<td>High</td>
<td>CPU</td>
</tr>
</tbody>
</table>

Adversaries in the automotive scenario based on [Paar2003].
Roles and Relations

- CP
- OEM
- MSP
- User
- Adversary

Service interface
User interface
Security Requirements

OEM
- Correctness
- Content integrity
- Content pre-selection
- Non-repudiation

Content Provider (CP)
- Correctness
- Content integrity
- Access rights enforcement
- Non-discrimination
- Non-repudiation

Maintenance service provider (MSP)
- Correctness
- Content integrity
- Non-discrimination
- Non-repudiation

Vehicle Owner/User (U)
- Correctness
- Content integrity
- Content authenticity
- Non-repudiation
- Privacy
At first glance it seems that all HW and SW components as well as channels must fulfill the security requirements in order to defeat at least adversary A_2. However, this is too restrictive and increases the implementation cost due to the high cost of the secure HW and SW components that become necessary. An analysis on the component level allows to liberate some components from these two requirements.

(a) HW architecture

(b) SW architecture
An Enhanced HW Architecture

- Crypto module for (external) confidentiality enforcement and integrity verification
- Small secure memory (SM)
- Defeats A_1 (comm) and A_2 (memory) w/o assumptions on security of ROM, nvRAM, and vRAM and corr. comm. channels
- Security assumptions only for CPU, SM & corr. channels (thus, both architectures fail to defeat adversary A_3)
Cryptographic Module

Capable embedded microprocessors, e.g. ARM or Atmel
- integrated cryptographic HW & secure memory
- proprietary (little flexibility)
- prob. oversized (resources, costs, ...)

Customized controller
- fast & free cryptographic cores available (cf. paper)
- adaptable in performance & secure memory size
- maximum flexibility
- custom controller design (high volumes req. to bring costs down)
Conclusions

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Feasible Attacks</th>
<th>Add. Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard HW Architecture</td>
<td>A₁, A₂, A₃</td>
<td>None</td>
</tr>
<tr>
<td>Secure (Std) HW Architecture</td>
<td>A₃</td>
<td>High</td>
</tr>
<tr>
<td>Enhanced (Std) HW Architecture</td>
<td>A₃</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Enhancing standard architecture with a cryptographic module . . .

- significantly reduces trust assumptions on memory and all corresponding communication channels
- defeats even sophisticated adversaries \((A₂)\)
- can be implemented efficiently w/ manageable changes
- causes only moderate additional costs

Ulrich Huber, Ahmad-Reza Sadeghi and Marko Wolf
Security Architectures for SW Protection in Vehicles
Thank you for your attention!

Security Architectures for Software Updates and Content Protection in Vehicles
Ulrich Huber, Ahmad-Reza Sadeghi and Marko Wolf